Spatial Audio Demo

Mentor: Prof. Truong Nguyen

Miriam Hamidi, Songyu Lu, Branson Beihl, Luke Yu, Scott He

Inspiration: Spatial Audio Applications

- In Music
 - Sony 360 Reality Audio: "the future of music"
 - AirPods pros newest update
- In Gaming
 - Playstation 5: 3D
 Soundscapes for most
 realistic video game
 experience yet

How it Works: HRTF

The Head Related Transfer Function: describes how a sound wave changes from its source to the inner ear

Sound leaves source

Sound wave is reflected/ refracted by anatomy of individual Unique signal for unique angle of sound source, brain uses these cues for sound localization in 3D

Structure: Educational Module

- Purpose: create an educational tool for students to
 - experiment with spatial audio personalized to their anthropometric features
 - understand the math/ECE concepts behind the process

User inputs image of ear

Ear/HRTF match identified (Matlab)

Personalized spatial audio is rendered

Still in progress!

Why Ear Matching?

Category		No	Ear dimensions
Ear dimensions	Length	1	ear length
		2	otobasion superius to otobasion posterius horizontal length [†]
		3	otobasion superius to otobasion posterius vertical length†
	Width	4	ear breadth
		5	ear protrusion
	Arc	6	upper otobasion arc†
Concha dimensions	Length	7	cavum concha length
		8	superior cavum concha to anterior cymba concha length
		9	posterior concha to anterior cymba concha lengt
	Width	10	cavum concha width
	Depth	11	cavum concha depth
Ear canal	Length	12	ear canal length†
dimensions	Width	13	ear canal width [†]

Measuring process can be complex Computing HRTF from measurements is difficult and time-consuming

SOLUTION: identifying a "best match" from measured HRTFs CIPIC database provides ear measurements and HRTFs [1]

Matching: Hu Moment Invariants[2]

Image Moments: weighted average of pixel intensities

Image Acquired

Normalization Filter Applied Image Segmented Moment Features
Extracted

Best HRTF match identified

h[0] = 0.00162663 h[1] = 0.00834555

Matching: Eigenears[3]

Database of ear images

Create a set of Eigenears using PCA

Input image

Calculate weight vectors

Take closest database ear

Matching: Q-Vector Analysis[4]

HOG(Histogram of Oriented Gradient) is a process that defines the curvature and the depths of the ears according to its shape

Original Image

HOG Features

Gather the features into histogram

Comparing the features & pick the better match

Repeating the previous step through database

Best Matching as output

Matching: Measurement[5]

User measures their ear for d1 -d8

User inputs specified ear measurements

Closest database match found

Audio Rendering: Our Application

- 2-channel
- KISSFFT for FFT computation
- SDL2 for
 - GUI design
 - Audio output

Menu:

Press 1 to choose path

Press 2 to choose audio

Press 3 to choose speed

DEMO

Choose the audio you want to hear:

0 for beep 1 for Star War 2 for train sound

3 for bee

Press 0 to choose standard path

Press 1 to choose customized path

Press enter to input customized azimuth

Choose Speed Level:

Default - 5 degree increment

1 - 10 degree increment

2 - 20 degree increment

3 - 30 degree increment

4 - 40 degree increment

Enter 3 digits to use as starting azimuth

Press enter to store starting azimuth

Enter 3 digits to use as ending azimuth

Press escape to store ending azimuth and return to menu

Plan moving forward

- Finish Audio Rendering
- Test Audio Localization Improvement
- Build Educational Side of Module
- Implement as Workshop

Thanks for Listening!

Special thanks to Professor Nguyen for advising us and for the SRIP program for supporting us!

Sources

- 1. CIPIC
- 2. Hu Moment Paper
- 3. <u>Eigenears</u>
- 4. Q-vector Analysis Paper
- 5. <u>Measurement Match Paper</u>
- 6. Original Github Program